分数的意义和性质教学设计

时间:2024-07-09 18:46:27
分数的意义和性质教学设计

分数的意义和性质教学设计

作为一名专为他人授业解惑的人民教师,总归要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。怎样写教学设计才更能起到其作用呢?以下是小编整理的分数的意义和性质教学设计,欢迎阅读,希望大家能够喜欢。

分数的意义和性质教学设计1

一、在解决简单的实际问题中,沟通整数除法与分数的联系

1. 回顾整数除法的含义。

(1)幼儿园的马老师把6块小点心,平均分给3个小朋友,每个小朋友得到多少块?

(2)提问:你是怎么得到的?

预设:6÷3=2(块)

2. 回顾分数的意义

二、在解决稍复杂的实际问题中,深化对分数意义的理解

(一)借助问题解决完成分数意义的深化

1. 把3块月饼,平均分给4个人,每人分得多少块?

2. 要求:请你用手中的学具剪一剪、摆一摆,也可以在本上写一写、画一画。表示出平均每人分得多少块?

3. 汇报:一边摆一边说自己是怎么得到每人分的块数的。

(二)巩固用分数表示商

请小组内交流想法

① 把这桶饼干平均放在5个保鲜盒中,平均每个保鲜盒放多少kg?

② 马腾从家到学校走了15分钟,他平均每分钟走多少km?

三、在理解分数意义的基础上,探究分数与除法的关系

1. 提问:观察这几个除法算式,你认为除法与分数有怎样的关系?

2. 提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?

3. 提问: a、b可以是任何数,对吗?

4. 小结:在除法中,0不能做除数,分数中的分母,相当于除法中的除数,所以分母不能是0。

四、综合应用,巩固理解分数与除法的关系

1. 教材第50页,“做一做”。

在下面括号里填上适当的数。

2. 教材第51页练习十二,第1题。

这些葡萄干平均装在2个袋子里,每袋重多少千克?

平均装在3个袋子中呢?

分数的意义和性质教学设计2

【新知识点】

分数的产生

分数的意义分数与意义

分数与除法

真分数

真分数与假分数假分数

带分数

假分数化带分数或整数

分数的基本性质

分数的基本性质

化成分母不同,大小不变的分数

最大公因数

约分求最大公因数

最简分数

约分及其方法

最小公倍数

通分求最小公倍数

分数比大小

通分及其方法

小数化分数

分数和小数的互化

分数化小数

【教学要求】

1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

3.理解和掌握分数的基本性质,会比较分数的大小。

4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数最大公因数与最小公倍数,能比较熟练地约分和通分。

5.会进行分数与小数的互化。

【教学建议】

1.充分利用教材资源,用好直观手段。

本单元教材在加强教学与现实世界的联系上作了不少努力.同时,教材还运用了多种形式的直观图式,数形结合,展现了数学概念的几何意义。从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。

本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、化抽象为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情况,调动学生相关的生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图式来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段

2.及时抽象,在适当的水平上,建构数学概念的意义。为了搞好木单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如,比较和的大小,有的学生回答不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出可能比大,也可能比小、,还可能和相等。造成这样错误的主要原因就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,建构概念的意义。

3.揭示知识与方法的内在联系,在理解的基础掌握方法。在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

[课时安排1

1.分数的意义……………………………………………5课时

2.真分数和假分…………………………………………4课时

3.分数的基本性质…………………………………………2课时

4.约分…………………………………………………6课时

5.通分…………………………………………………4课时

6.分数与小数的互化………………………………………3课时

整理和复习………………………………………………2课时

第四单元实力评价…………………………………………1课时

1.分数的意义

第一课时

一教学内容

分数的产生

教材第60页的内容。

二教学目标

1.使学生知道分数的产生过程。

2.使学生感受到数学知识同样是在人类的生产和生活实践中产生的。

三重点难点

理解分数的产生。

四教具准备

米尺,挂图,几张长方形、正方形的纸。

五教学过程

(一)导入

同学们, ……此处隐藏4341个字……识与方法的内在联系,在理解的基础上掌握方法。

五、具体安排:略

分数的意义和性质教学设计7

学习内容:

课本第76页例2及“做一做”第2题。

学习目标:

1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。

2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。

学习重难点:

我能应用分数的基本性质解决简单的实际问题。

学习过程:

一、导入新课

二、合作探究、检查独学

1.自学教科书76页例2: 把和化成分母是12而大小不变的分数。

(1)思考:

① 要把2/3化成分母是12的分数,我们就要把分母( )乘( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该( )。最后分子分母都乘了个( ),就把2/3化成了分母是12的分数( )。

② 要把10/24化成分母是12的分数,我们就要把分母( )除以( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该( )。最后分子分母都除以了个( ),就把10/24化成了分母是12的分数( )。

(2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。

2.小组代表展示、汇报

3.总结升华

4.我能行: 完成课本第76页“做一做”第2题。

分数的意义和性质教学设计8

一教学内容

假分数

教材第70页的例3。

二教学目标

1.使学生认识带分数,学会把假分数化成整数或带分数的方法。

2.进一步培养学生的数感。

三重点难点

掌握把假分数化成整数或带分数的方法。

四教具准备

投影。

五教学过程

(一)导入

提问:上节课我们学习了什么知识?什么叫真分数?什么叫假分数?

学生回忆并回答。

(二)教学实施

1.出示例3中的插图。

提问:从图中你知道了哪些分数信息?其中一个同学说:“我吃了一个半”,怎样用分数表示一个半?

老师随着提问,出示下图。

学生观察图,先独立思考,然后指名回答,“一个半”是l+的和。

老师提示:1+的和可以写成1。(板书:1)

2.再让学生观察插图中其他几个同学吃了多少个橙子?怎样用分数表示?

学生试着说一说,老师分另”板书:1,2,。

3.老师指出:像1,1,…这样的分数,叫带分数。观察这些带分数都是怎样组成的?你会读出这几个带分数吗?4,请学生独立举出一两个带分数,让学生读一读。

5.老师小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。

6.指出:有时根据需要,要把假分数化成整数或带分数。

(三)思维训练

做同一种零件,王师傅2小时做15个,李师傅3小时做20个。谁做得快一些?(化成带分数再比较)

(四)课堂小结

通过本节课的学习,我们认识了什么是带分数,并会正确地把假分数化成带分数。

第三课时

一教学内容

第71页的例4及“做一做”。

二教学目标

1.进一步培养学生的数感。

2.培养学生应用数学知识解决问题的意识。

三重点难点

掌握把假分数化成整数或带分数的方法。

四教具准备

投影。

五教学过程

(一)导入

(1)出示例4,请学生看图说出假分数。

老师指出:这里都把一个圆看作单位“1”。

提问:(l)它们的分数单位分别是什么?它们各有几个这样的分数单位?

(2)怎样把这几个假分数化成带分数?

学生以小组为单位讨论第(2)个问题。

请小组代表发言:=1=2

请问:你是怎样得到这两个结果的?

学生汇报,可以从以下两个方面说:一种是看图直接得出=1=2,一种是根据分数与除法的关系得到结果。

老师强调指出:因为4个是1,而8÷4=2,所以8个是2,也就是=8÷4=2

提问:这两个结果都是什么数?你发现在什么情况下,假分数能化成整数了吗?

小结:当分子是分母的倍数时,假分数可以化成整数。

提问:的分子还是分母的倍数吗?这种情况怎样化?学生回答:根据分数与除法的关系计算7÷3,商2表示7份中的6份,还剩1表示1份,是所以结果是2。

提问:化成带分数,怎样化?

学生独立完成,写在练习本上,然后集体订正。

=6÷5=1

(二)小结。

假分数化成整数或带分数的方法是什么?

(1)分子是分母的倍数时,化成整数,用分子除以分母,商是整数。

(2)分子不是分母倍数时,化成带分数,用分子除以分母,数的整数部分,余数是分数部分的分子,分母不变。

9.指导学生完成教材第71页的“做一做”。

学生口述方法及结果,全班同学判断。

(四)思维训练

在中,a是非0自然数。当a时,它是真分数;当a时,它是假分数;当a_时,它能化成整数。

第四课时

一教学内容

真分数和假分数的练习课

教材第72一74页练习十三的第1一13题。

二教学目标

1.通过教学,巩固学生对真分数、假分数和带分数的认识,并能正确地把假分数化成整数或带分数。

2.培养学生综合应用所学知识解题的能力。

3.培养学生复习的良好习惯。

三重点难点

综合应用分数的意义及真分数、假分数和带分数的知识解题。

四教具准备

投影。

五教学过程

(一)导入

谈话:前几节课,我们研究了有关分数的哪些知识?

学生回忆并回答。

老师:今天,我们就来应用这些知识解题,看谁掌握得好。

(二)教学实施

1.完成教材第72页的第1题。

让学生在课本上填一填,并读一读。

2.完成教材第72页的第2题。

老师提示:把一个椭圆或一个六边形看作单位“1”。

让学生看图在课本上写出分数。

提问:还可以把谁看作单位“1"?涂色部分占几分之几?学生自己确定单位“1",再看图写出分数,集体交流。

《分数的意义和性质教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式